The Avalanche Effect

e A desirable property of any encryption algorithm is that a small change
in either the plaintext or the key should produce a significant change in
the ciphertext. In particular, a change in one bit of the plaintext or one
bit of the key should produce a change in many bits of the ciphertext.
This is referred to as the avalanche effect

e 1 bit change in the plain text < changes around 34 bits of cipher text

e Similarly 1bit change in Key <> changes around 35 bits of cipher text



Avalanche Effect in DES: Change in Plaintext

Zb2ce Fbec99E91 153

057cde97d7683f2a

Round o Round o

02468aceeca86420 1 9 cllbfc09887fbc6cC 32
Cp468aceeca86420 99f911532eced7d94

1 3cf03c0fbad22845 1 10 887fbc6c6e00f7e8b 34
3cf03c0fbad@r84s 2eed7d94d0£23094

2 bad2284599%9e8b723 5 11 600f7e8bf596506e 37,
bad@r84Q9@eb 13 d0f23094455da9c4

3 99%e9b7230bae3b%e 18 12 £f596506e738538b8 31
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S 4241564918b3fadl 37 14 cea62cdeS56b0bd75 33
ccacab55edleéec3653 4bcla8d%le07d409

') 18b3fad4dl1o6lefe23 33 15 56b0bd7575e8fdS8f 31
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cf402c682b2cefbc lcel2e6dc365e5f59

8 67117cf2cl1bfc09 33 ip—! daO2ce3a89ecac3b 32




Avalanche Effect in DES: Change in Key

Round o Round o
02468aceeca886420 0 9 cllbfc09887fbc6c 34
02468aceeca8ed420 548flded471f64dfd

1 3cf03c0fbad22845 3 10 887 fbc6c600f7e8b 36
3cf03c0f9%ade6e28cS 71f64dfd4279876c

> bad228459%e9b723 11 11 600f7e8bf596506e =
9ad628c59939136b 4279876c399fdc0d

3 99e9b7230bae3b%e 25 | 7. f596506e738538b8 28
9932136b768067b7 399 fdc0ded208dbb

4 Obae3b%e42415649 29 13 738538b8c6a62cde 33
768067b75a8807c5 6d208dbbb9%bdecaa

5 4241564918b3fadl 26 14 c6ac2cd4e56b0bd75 30
5a8807c5488dbe94 b9bdeecaad2c3aS56f

(8 18b3fad4196l16fe23 26 15 56b0bd7575e8fds8f 2
488dbeS%4aba7fes53 d2c3a5e6f2765cl1fb

7 9616fe2367117cf2 27 16 75e8fd8f25896490 30
aba7fe53177d21e4 2765cl1fb01263dc4

8 67117cf2cllbfc09 32 ip! daO2ce3a89%ecac3b 30
177d21e4548f1de4d ee92b50606b62b0b




THE STRENGTH OF DES: Use of 56-Bit Keys

 With a key length of 56 bits, there are 2°° possible keys, which is approximately 7.2 x 10 keys.

* A brute-force attack appears impractical.

e single machine performing one DES encryption per microsecond would take more than a

thousand years to break the cipher.

e 1977, Diffie and Hellman postulated that the technology existed to build a parallel machine with 1
million encryption devices, each of which could perform one encryption per microsecond
[DIFF77]. This would bring the average search time down to about 10 hours. The authors

estimated that the cost would be about $20 million in 1977 dollars.



THE STRENGTH OF DES: Use of 56-Bit Keys

* With current technology, it is not even necessary to use special, purpose-built hardware. Rather,

the speed of commercial, off-the-shelf processors threaten the security of DES.

e A single PC can break DES in about a year; if multiple PCs work in parallel, the time is drastically

shortened.
e Today’s supercomputers should be able to find a key in about an hour.
» Key sizes of 128 bits or greater are effectively unbreakable using simply a brute-force approach.

 Even if we managed to speed up the attacking system by a factor of 1 trillion (101?), it would still

take over 100,000 years to break a code using a 128-bit key.



Average Time Required for Exhaustive Key

Search
Number of Time Required
Alternative Time Required at 10 at 10"
Key Size (bits) Cipher Keys Decryptions/s Decryptions/s
56 DES 2% ~ 72 x 10' 2% ns = 1.125 years I hour
128 AES 2B ~34x10% | 2% ns =53 x 10" years 5.3 % 10" years
163 Triple DES | 21% ~ 37 % 10 | 2! ns = 5.8 X 10* years 5.8 X 10¥ years
192 AES 2”2 = 63 x 107 | 2"'ns = 9.8 X 10¥ years 9.8 X 10% years
256 AES 256 ~ 12 %107 | 2%°ns = 1.8 x 10¥ years 1.8 X 10 years
26 characters | Monoalphabetic | 21 =4 x 10% |2 %X 10%ns = 6.3 x 10° years | 6.3 X 10° years

(permutation)




THE STRENGTH OF DES: Nature of the DES
Algorithm

* The possibility of exploiting the characteristics of the DES algorithm.

* The focus of concern has been on the eight substitution tables, or S-boxes, that are used in each

iteration.
* The design criteria for these boxes, and indeed for the entire algorithm, were not made public
* Speculation is that cryptanalysis is possible for an opponent who knows the weaknesses in the S-boxes.
* Unexpected behaviors of the S-boxes have been discovered.

* No known cases of exploiting this case has been recorded till date.



THE STRENGTH OF DES: Timing Attacks

e A timing attack is one in which information about the key or the plaintext is
obtained by observing how long it takes a given implementation to perform

decryptions on various ciphertexts.

e A timing attack exploits the fact that an encryption or decryption algorithm often

takes slightly different amounts of time on different inputs.

e DES appears to be fairly resistant to a successful timing attack



Differential Cryptanalysis

 Differential cryptanalysis is a method for breaking certain classes of
cryptosystems

e It was invented in 1990 by lIsraeli researchers Eli Biham and Adi
Shamir

e However, apparently the IBM researchers who designed DES knew
about differential cryptanalysis, as was indicated by Don Coppersmith
of T) Watson Research Center



Differential Cryptanalysis

e Differential cryptanalysis is efficient when the cryptanalyst can choose
plaintexts and obtain ciphertexts (chosen plaintext cryptanalysis)

* The known plaintext differential cryptanalysis is also possible, however,
often the size of the known text pairs is very large

e The method searches for plaintext, ciphertext pairs whose difference is
constant, and investigates the differential behavior of the cryptosystem

e The difference of two elements P1 and P2 is defined as P1 @ P2 (bit-wise
XOR operation) for DES

* The difference may be defined differently if the method is applied to some
other cryptosystem



Differential Cryptanalysis

* Differential cryptanalysis is applicable to the iterated ciphers
with a weak round function (so-called Feistel ciphers)

* The summary of the technique:

e Observe the difference between the two ciphertexts as a function
of the difference between the corresponding plaintexts

* Find the highest probability differential input (called characteristic)
which can be traced through several rounds

e Assign probabilities to the keys and locate the most probable key



S1 Differential Distribution Table

Input Output 7/

x’ O1 23 456 78 9 AB CD EF
OO0 640 OO0 OO0 OO O OO OO OO
O1 OO0 06 02494 401012 410 6 2 4
02 OO0 08 0494 40 6 8612 6 4 2
03 |1494 221064 26 4 40 22 20
.. OO0 08 066 00 6 64 o6 6 149 2
34 08166 200126 0O 00 O 8 06
| = 48 22 2494414949 2 02 08 44
3F 44 42 402 44 2 48 8 6 22




e The 6-bit differential input x’ takes 64 values: 00 (hex) to 3F (hex)
e The 4-bit differential output y’ takes 16 values: O (hex) to F (hex)

e The first row has zeros in all but the first column, because when x’ = x
@ x*x =0, the same input occurs twice.

* Therefore, the same output must also occur both times and y’ =y @
y*=0

e The later rows are more interesting:

e For example, when x’ = 01, five of the sixteen possible y’ values O, 1,
2, 4, 8 occur with zero probability (i.e., never occurs)

e A occurs with probability 16/64. 9 and C occur with probability 10/64
 This is a highly non-uniform distribution

 This differential non-uniformity is observed in all of the S-boxes S1,
S2,...,S8



Determination of the key:

Suppose we know two inputs to S1 as 01 and
35 which XORs to 34, and the output XOR as
D

34: 01, 35 XOR is 34
S1g S1k — A

e 6 |32
& 34: 06, 10, 16, 1C
' 51 22 24,28 32 |10 |24

16 | 22
1C | 28

S1g l D:

The input XOR is 34, regardless of the value
of the key because

S17 = S1;@ S1}

(S1p @ S1k) @ (S1; & S1k)
Slp & S1%

S15

Also since

Sly=S1p® Slk

Slhf: 5111{7515

we have

which gives
0601 = 07
10601 = 11
1601 = 17
1Ce401 = 1D
2201 = 23
24501 = 25
28601 = 29
F2ell = 33

Thus, possible keys are:

06 & 35
10 35
16 ® 35
1C & 35
22¢ 35
24 ¢ 35
28 ® 35
32® 35

|

{07,11,17,1D, 23,25, 29, 33}

33
25
23
29
17
11
1D
07



Furthermore, suppose we know two inputs to
S1 as 21 and 15 which XORs to 34, and the

output XOR as 3

34: 21,15
i - STk

81, 34: 01,02, 15, 21
S1 35, 36

S1g J' Be

This gives the key values:

01921 = 20 01 & 15
02421 = 23 02& 15
15621 = 34 156 15
21921 = 00 21 ® 15
35621 = 14 35 15
36 21 = 17 36 & 15

as

{00, 14,17,20, 23,34}

LI

14
17
00
34
29
23

The correct key value must appear in both of
these sets:

{07, 11, 17,20, 23, 25, 29, 334

{00,14,17,20,23,34}
Intersecting these two sets, we obtain
{17,23}
Thus, the key value is either 17 or 23

In order to determine which one of these is
the correct value, we need more input/output
XORs



A 2-Round Characteristic 6 = 0110 goes to S1 and 0 = 0000 goes to
o .

[(00808200.60000000) J

‘ Since all the edge bits are zero, S1 is the only
p=14/64 S-box receiving non-zero differential input

A’=00 80 82 00 f(R,K) a'=60 00 00 00

S1's differential input is 0 0110 0 = 0C while
the differential inputs of S2,...,58 are all zero

p=1

Looking in S1's differential distribution table,
we find that when 2/ = 0C, the highest proba-
bility differential output ' is E = 1110, which
The differential input to F' in the first round is gccurs with probability 14/64

a’ = 60 00 00 00

[(oooboooo,soooobom ]

I /I
The expansion operation puts these half bytes All the other S-boxes have 2z’ = 0 and y = 0
into the middle four bits of each S-box in order With probability 1



The S-box outputs go through the permuta-
tion P before becoming the output f(R,K)

As shown, the differential output of f(R, K) is
A’ = P(E0 00 00 00) = 00 80 82 00

A’ = 00 80 82 00 is then XORed with L' =
00 80 82 00 to give 00 00 00 00

Thus, in the second round all S-boxes receive
their differential inputs as zero, producing the
differential outputs as zero

The ouput of f(R,K) in the second round is
zero, giving the differential output as depicted:
(00 00 00 00, 60 00 00 00)

Differential Cryptanalysis
of 2-Round DES

This analysis assumes the initial (IP) and final
(FP) permutations are removed from the DES
algorithm

Step 1: Generate a plaintext pair (P, P*) such
that

P'=Pa P* =00 80 82 00 60 00 00 00

This is done by generating a random P and
XORIing it with

00 80 82 00 60 00 00 00

to generate P*



Step 2: Give the plaintext pair (P, P*) to your
opponent who enciphers it and gives you the
ciphertext pair (T,T%)

(chosen plaintext cryptanalysis)

Step 3: Compute T/ = T&T* and see whether
it is equal to

00 00 00 00 60 00 00 00

If it does not, the characteristic has not oc-
curred and this pair is not used. Go to Step 1
and generate a new plaintext pair.

If T’ is equal to
00 00 00 00 60 00 00 00

then the characteristic has occurred, and we
know the values of A’ and B’. Go to Step 4.

Step 4: Since S2,.....58 have their differential
inputs equal to zero, no information can be
gained about S2,..., S8

Because, in the differential distribution table of
S1, we have 0C — E with probability 14/64,
only 14 of 64 possible S1k values allow

a’ = 60 00 00 00

to produce

A’ =00 80 82 00

These 14 allowable values can be determined
by XORIing each possible S1k with the corre-
sponding six bits of S1p and S17%,, computing
S1's differential output S1;, and checking if it
is equal to F

Put these 14 values of S1k in a table



Step 5: Compute the intersection of these Step 6: At this point we have recovered the
tables 6 bits of the key comprising S1k

Since the correct key value must occur in each
table, it will be in the intersection Use similar characteristics to recover the 6 bits

If more than one S1g value results, we do not of key which are XORed with 52 throth 58's

have enough plaintext, ciphertext differential inputs in the first round
pairs to uniquely determine S1g. Go to Step
1 and generate additional data

Step 7. At this point we have 48 bits of the

The number of plaintext, ciphertext differen- key which comprise Sy, or equivalently S1g
tial pairs needed is approximately equal to the through 58]\/

inverse of the probability of the characteristic

used,; in this case 64/14 ~ 5 pairs are needed

Find the remaining 8 bits of K by exhaustive

el ) Its. it i : .
If a single S1 value results, it is correct. Go search over the 64 possible values

to Step 6



Differential Cryptanalysis
Compares Pairs of Encryptions

Differential cryptanalysis compares two
related pairs of encryptions

with known difference in the input mg|[m,
searching for a known difference in output

when same subkeys are used

Am; = M @ My
= [m;_1 @ f(m, K;)] @ [miy @ f(m}, K;)]
— ‘i"'ﬂi—'l ':‘B [f[:"’ﬂ:':- HE] ';-._I_:' f{:ﬂ?;, Hi}]




Input round i

Input round i+1

Overall probabilty
of given output
difference is
(0.25)(1.0)(0.25)
= 0.0625

( Am;_y |l Am; = 40 08 00 00 04 00 00 00 )

é f(Am;) = 40 08 00 00

f(Am;, ;) = 00 00 00 00

5 f(Am,-+2) =40 08 00 00

( Amgy3 1| Amy,, = 40 08 00 00 04 00 00 00 )




Linear Cryptanalysis

another fairly recent development
also a statistical method

must be iterated over rounds, with
decreasing probabilities

developed by Matsui et al in early 90's
based on finding linear approximations

can attack DES with 243 known plaintexts,
easier but still in practice infeasible



Linear Cryptanalysis

find linear approximations with prob p != 1%

Pli i presi o] O Cli 0 sreend 6] =
KIK 1K ek ]

wherei _,j ,,k . are bitlocations in P,C,K
gives linear equation for key bits
get one key bit using max likelihood alg

using a large number of trial encryptions
effectiveness given by: |p— 1/ ,|



Block Cipher Design Principles

 The cryptographic strength of a Feistel cipher derives from three
aspects of the design:
e the number of rounds,
e the function F,

e and the key schedule algorithm.



Block Cipher Design Principles: number of rounds

* The greater the number of rounds, the more difficult it is to perform cryptanalysis, even for a

relatively weak F

* In general, the criterion should be that the number of rounds is chosen so that known

cryptanalytic efforts require greater effort than a simple brute-force key search attack

e If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than a brute-

force key search

e Schneier [SCHN96] observes that for 16 round DES a Differential cryptanalysis attack is slightly

less efficient than brute force attack.



Block Cipher Design Principles: Design of Function F

e The heart of a Feistel block cipher is the

function F

e The more nonlinear F, the more difficult any

type of cryptanalysis will be

e The SAC and BIC criteria appear to strengthen

the effectiveness of the confusion function

e The algorithm should have good avalanche

properties

7

\ -

Strict avalanche
criterion (SAC)

~\

/

=1 change with probability

S ——

States that any output
bit j of an S-box should

1/2 when any single input
biti isinverted forall i, |

Bit
independence

\, /

criterion (BIC)

/

. —r=c L

States that output bits |
and k should change
independently when

| any single input bit i is

inverted foralli,j,and
k
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Block Cipher Design Principles: key schedule
algorithm

e With any Feistel block cipher, the key is used to generate one subkey for

each round

* In general, we would like to select subkeys to maximize the difficulty of
deducing individual subkeys and the difficulty of working back to the main
key

e |t is suggested that, at a minimum, the key schedule should guarantee

key/ciphertext Strict Avalanche Criterion and Bit Independence Criterion



Problem Solving-3

(1) This problem provides a numerical example of encryption using a one-round version of
DES. We start with the bit pattern for the plaintext. as:
in hexadecimal notation: 0 123456789ABCDEF
in binary notation: 0000 0001 0010 0011 0100 0101 0110 0111
1000 1001 1010 1011 1100 1101 1110 1111
And the 64 bits Key as:
in hexadecimal notation:1 33457799BBCDFF1

a. Derive K1, the first-round subkey.

b. Derive L0. RO.

c. Expand RO to get EXP(RO).

d. Calculate 4 = EXP(R0) XOR X1.

e. Group the 48-bit result of (d) into sets of 6 bits and evaluate the corresponding S-box
substitutions.

f. Concatenate the results of (e) to get a 32-bit result. B.

g. Apply the permutation to get P(B).





